Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Diam Relat Mater ; 134: 109775, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2237510

ABSTRACT

In this study, we introduced H-terminated diamond solution-gate field-effect transistor (H-diamond SGFET) to detect trace SARS-CoV-2 N-protein, which plays an important role in replication and transcription of viral RNA. 1-Pyrenebutyric acid-N-hydroxy succinimide ester (Pyr-NHS) was modified on H-diamond surface as linker, on which the specific antibody of SARS-CoV-2 N-protein was catenated. Fourier transform infrared spectrum, scanning electron microscope and energy dispersive spectrum were utilized to demonstrate the modification of H-diamond with Pyr-NHS and antibody. Shifts of IDS(max) at VGS = -500 mV in transfer characteristics of H-diamond SGFET was observed to determine N-protein concentration in phosphate buffer solution. Good linear relationship between IDS(max) and log10(N-protein) was observed from 10-14 to 10-5 g/mL with goodness of fit R2 = 0.90 and sensitivity of 1.98 µA/Log10 [concentration of N-protein] at VDS = -500 mV, VGS = -500 mV. Consequently, this prepared H-diamond SGFET biosensor may provide a new idea for diagnosis of SARS-CoV-2 due to a wide detection range from 10-14 to 10-5 g/mL and low limit of detection 10-14 g/mL.

2.
Water Res ; 204: 117606, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1373297

ABSTRACT

The epidemic of COVID-19 has aroused people's particular attention to biosafety. A growing number of disinfection products have been consumed during this period. However, the flaw of disinfection has not received enough attention, especially in water treatment processes. While cutting down the quantity of microorganisms, disinfection processes exert a considerable selection effect on bacteria and thus reshape the microbial community structure to a great extent, causing the problem of disinfection-residual-bacteria (DRB). These systematic and profound changes could lead to the shift in regrowth potential, bio fouling potential, as well as antibiotic resistance level and might cause a series of potential risks. In this review, we collected and summarized the data from the literature in recent 10 years about the microbial community structure shifting of natural water or wastewater in full-scale treatment plants caused by disinfection. Based on these data, typical DRB with the most reporting frequency after disinfection by chlorine-containing disinfectants, ozone disinfection, and ultraviolet disinfection were identified and summarized, which were the bacteria with a relative abundance of over 5% in the residual bacteria community and the bacteria with an increasing rate of relative abundance over 100% after disinfection. Furthermore, the phylogenic relationship and potential risks of these typical DRB were also analyzed. Twelve out of fifteen typical DRB genera contain pathogenic strains, and many were reported of great secretion ability. Pseudomonas and Acinetobacter possess multiple disinfection resistance and could be considered as model bacteria in future studies of disinfection. We also discussed the growth, secretion, and antibiotic resistance characteristics of DRB, as well as possible control strategies. The DRB phenomenon is not limited to water treatment but also exists in the air and solid disinfection processes, which need more attention and more profound research, especially in the period of COVID-19.


Subject(s)
COVID-19 , Microbiota , Bacteria , Disinfection , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL